

BS EN ISO 10140-2:2010

Test of: Fire Products

Acoustics - Laboratory measurement of sound insulation of building elements. Measurement of airborne sound insulation

A Report To: Sika Service AG Tueffenwies 16 CH-8408 Zurich Switzerland

Document Reference: BMTMTP/F14022/AR6

The details of the sponsor of the original test report BMT/MTP/F14022 are held on file by Warringtonfire. This report is additional to that issued originally as BMT/MTP/F14022 and dated 7th March 2014. The original report shall remain valid and is not replaced by the additional report.

Date: 07/02/2020

Copy: 1

Issue No.: 1

Page 1

Contents

Page No.

Sum	mary of Performance	. 3
1	Introduction	. 4
2	Test Specimen Details	. 5
3	Methodology	. 6
4	Parameters & Limitations	. 7
5	Authorisation	. 7
Appe	endix 1 – Summary of Results & Test Data Sheets – Specimen only 1m² (2 Pages)	. 8
Арре	endix 2 – Summary of Results & Test Data Sheets – Specimen and partition 14.2m² (2 Pages)	. 9
Anne	endix 3 – Summary of Results & Test Data Sheets – Dnew (2 Pages)	10

Document No.: BMTMTP/F14022/AR6 Page No.: 2 of 10

Author: Martin Durham Issue Date: 07/02/2020

Sponsor: Sika Services AG Issue No.: 1

Summary of Performance

The following performance was achieved from the specimens tested. Full details of the testing and specimen construction are described in the report.

Test No.	Product Name	Product Type	Test Description	Test Result – specimen only 1m ² (R _w (C;C _{tr})	Test Result - specimen and partition 14.2m ² (R _w (C;C _{tr})	Test Result - Dnew (R _w (C;C _{tr})
1	Sikacryl® 621 Fire	Fire Products	Sikacryl® 621 Fire On source room side of wall, 15mm deep x 60mm wide x 2000mm high, woth 55mm deep stonewall (60kg/m3) backing	51 (-1;-6) dB	62 (-1;-6) dB	61 (-1;-6) dB
2	Sikacryl® 621 Fire	Fire Products	Sikacryl® 621 Fire On source room side of wall, 25mm deep x 60mm wide x 2000mm high, woth 55mm deep stonewall (60kg/m3) backing	51 (-1;-6) dB	63 (-1;-7) dB	61 (-1;-6) dB

Document No.: BMTMTP/F14022/AR6 Page No.: 3 of 10

Author: Martin Durham Issue Date: 07/02/2020

Sponsor: Sika Services AG Issue No.: 1

1 Introduction

The test specimen was supplied by the sponsor and delivered to WARRINGTONFIRE on 28 January 2014. The specimen was installed into a timber stud partition within the test chamber by the sponsor.

Test Details

The specimen was tested to BS EN ISO 10140-2:2010 Acoustics - Laboratory measurement of sound insulation of building elements. Measurement of airborne sound insulation

Testing was conducted at Warringtonfire, Chiltern House, Stocking Lane, Hughenden Valley, Buckinghamshire. HP14 4ND on the 28 January 2014.

For details of the testing, please see Section 3, Methodology.

Supporting Construction Description

The partition consisted of two wall leaves separated by a 150mm air gap. Each wall leaf was constructed of nominal 45mm x 90mm softwood studs at 600mm centres with two layers of 15mm plasterboard on each face. The stud wall cavities were filled with 100mm thick Rockwool insulation.

Laboratory Construction Details

The laboratory consists of a source room and a receive room that are completely separated by a 50mm gap filled with mineral wool. Intersections of the floor, wall and ceiling planes are all perpendicular. The rooms have opposite openings for the installation of the test specimen formed by masonry piers and lintels. The depth of the piers is greater in the source room than the receive room.

The walls are of timber frame construction, approx. 190mm thick, symmetrical through the thickness. Studs are 90mm deep at 600mm centres with mineral wool insulation between them. Resilient bars approx. 20mm deep are fixed to the studwork. Two layers of 15mm gypsum board are fixed to the bars on both the inner and outer face.

The ceilings consist of 150mm deep timber joists with mineral wool insulation installed between joists. Resilient bars approx. 20mm deep are fixed to the lower edge of the joists. Two layers of 15mm gypsum board are fixed to the bars on the inner face only.

The floors are assembled from sound absorbing boards on a rubber underlay.

Dimensions:

	Volume	Width	Length	Height
	m³	m	m	m
Source room	82.4	5.49	6.03	2.49
Receive room	69.6	5.49	5.09	2.49

Document No.: BMTMTP/F14022/AR6 Page No.: 4 of 10
Author: Martin Durham Issue Date: 07/02/2020
Sponsor: Sika Services AG Issue No.: 1

2 **Test Specimen Details**

Product Name	Sikacryl® 621 Fire
Product Type	Fire Products
Material Type	Sealants / mineral wool

See Summary of Performance and Appendix's 1,2 and 3 for more details

Document No.: BMTMTP/F14022/AR6 Page No.: 5 of 10 Author: Martin Durham Issue Date: 07/02/2020 Sika Services AG Issue No.: Sponsor:

3 Methodology

Airborne Sound Insulation Test

- The loudspeakers were placed in the corners of the source room
- The sound level meter was calibrated prior to testing.
- 5 measurements were taken in the source room, at fixed positions.
- 5 measurements were taken in the receive room at fixed positions.
- Background measurements were taking at each third octave frequency between 50Hz and 5000Hz.
- 6 Reverberation measurements were taken in the receive room, in accordance with BS EN ISO 3382-2:2008 interrupted, engineering method.
- Calculations, including C & Ctr, were carried out in accordance with BS EN ISO 717-1
- The sound reduction index was calculated using the following formula from BS EN ISO 10140-2:2010:

$$R_w = L1 - L2 + 10 Log\left(\frac{S}{A}\right) dB$$

Where:

L1 is the logarithmic average of the source room measurements L2 is the logarithmic average of the receive room measurements S is the area of the test specimen

A is the equivalent absorption area, where $A=\frac{0.16V}{T}$

Where:

V = The volume of the receive room

T = the reverberation time measured in seconds

- 1. Logarithmic average of 5 Measurements (L1 & L2)
- 2. Deduction of L1s from L2s
- 3. Area of test specimen (S) divided by equivalent sound absorption area (A)
- 4. Weighted Final Result Rw dB

Test Equipment

Equipment	Equipment reference number
Bruel & Kjaer Sound Level Meter (Type 2270)	ACT-009
Bruel & Kjaer Microphones (Type 4189)	ACT-010 & ACT-016
Bruel & Kjaer Calibrator (Type 4231)	ACT-011
Amplifiers	ACT-007 & ACT-049
Noise Generators	ACT-008 & ACT-009
Loudspeakers (EV ZX1-90PA)	ACT-006, ACT-021, ACT-022
Graphic Equaliser (DBX Dual Channel)	ACT-023

Document No.: BMTMTP/F14022/AR6 Page No.: 6 of 10

Author: Martin Durham Issue Date: 07/02/2020

Sponsor: Sika Services AG Issue No.: 1

4 Parameters & Limitations

Parameters

The test fulfilled all criteria required of ISO 10140-2, including:

- Sound level meter (microphone) was located as required
- Sound sources (loudspeakers) were located as required
- Reverberation Time readings were greater than 20dB but not so large that the observed decay cannot be represented by a straight line.
- Background noise measurements were 10dB below L2 measurements.
- Temperature was reported to within ± 0.1°C
- Barometric pressure was reported to within ± 0.01 Mbar (±1 Pa)
- Humidity was reported to within ± 1%
- Frequencies 50Hz, 63Hz and 80Hz are outside of our UKAS accreditation, and are for reference only. These frequencies do not affect the over *R*_w figure.
- R'_{max} of the test chambers was measured to be 65dB
- The test chambers are two cuboid rooms 5.49m wide and a ceiling height of 2.58m, volumes of chambers for testing are reported with the individual test data

Limitations

- The results only relate to the behaviour of the specimen submitted for test, as described in the Technical Specification (Section 2), and under the particular conditions of test.
- The results are not intended to be the sole criteria for assessing the acoustic performance of the element in use nor do they necessarily reflect the actual behaviour once installed on site.
- The specification and interpretation of test methods are the subject of ongoing development and refinement. Changes in associated legislation may also occur. For these reasons it is recommended that the relevance of test reports over 5 years old should be considered by the user. WARRINGTONFIRE will be able to offer a review of the procedures adopted for a particular test to ensure that they are consistent with current practices.
- The results are solely for use by the sponsor and the stated purpose.
- The sponsor cannot rely on information provided without consent from WARRINGTONFIRE.
- Any recommendations are specific to the assignment and the sponsor.
- Extracts from the report are not permitted.

5 Authorisation

	Issued by:	Authorised by:
Signature:	all	L. B.M
Name:	Martin Durham	Lee Grant-Riach
Title:	Laboratory Manager	Lead Technical Officer
Date of Issue	7 th February 2020	

Document No.: BMTMTP/F14022/AR6 Page No.: 7 of 10

Author: Martin Durham Issue Date: 07/02/2020

Sponsor: Sika Services AG Issue No.: 1

Appendix 1 – Summary of Results & Test Data Sheets – Specimen only 1m² (2 Pages)

Product Name	Sikacryl® 621 Fire
Product Type	Fire Products

Data Sheet Ref.	Variations		Test Result
			R _w (C;C _{tr})
BMTMTP/F14022/AR6/P001	Test Description	Sikacryl® 621 Fire On source room side of wall, 15mm deep x 60mm wide x 2000mm high, woth 55mm deep stonewall (60kg/m3) backing	51 (-1;-6) dB
BMTMTP/F14022/AR6/P002	Test Description	Sikacryl® 621 Fire On source room side of wall, 25mm deep x 60mm wide x 2000mm high, woth 55mm deep stonewall (60kg/m3) backing	51 (-1;-6) dB

Document No.: BMTMTP/F14022/AR6 Page No.: 8 of 10

Author: Martin Durham Issue Date: 07/02/2020

Sponsor: Sika Services AG Issue No.: 1

1762

Sponsor:	Sika Services AG
Product Name/Desc.	Sikacryl® 621 Fire
Product Type	Fire Products
Material Type	Sealants / mineral wool

Variations:

Test Description Sikacryl® 621 Fire On source room side of wall, 15mm deep x

60mm wide x 2000mm high, woth 55mm deep stonewall

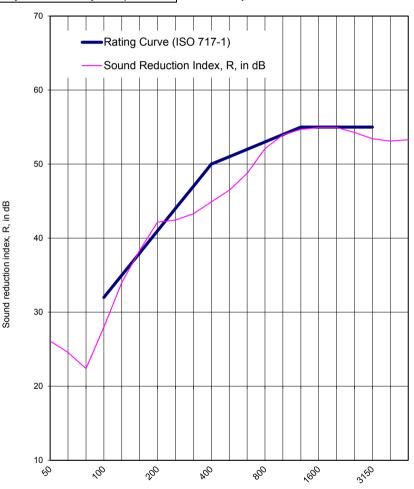
(60kg/m3) backing

For detailed technical specification, please refer to Section 2 of the report

Data sheet Ref. BMTMTP/F14022/AR6/P001

Date of Test: 28/01/2014

Source Room Volume: 86.00 m³
Receive Room Volume: 63.00 m³
Specimen Installed By: Client
Area of Specimen (S): 1.00 m²


Sour. Rec.

 Temp. in Test Rooms:
 17.1
 17.1
 °C

 Static Pressure:
 100900.0
 100900.0
 Pa

 Humidity in Test Rooms:
 52.3
 52.3
 %

f, Hz	R	,dB	
50 ⁺		26.1	
63 ⁺		24.6	
80 ⁺		22.4	
100		28.0	<u> </u>
125		34.0	
160		38.4	17-
200		42.2	SO 7
250		42.4	jŧ.
315		43.3	i e
400	į	44.9	rdan
500	İ	46.5	acco
630		48.7	requency range for rating in accordance with ISO 717-1
800		52.1	or ra
1000		53.9	ge fc
1250		54.7	, ran
1600		54.9	enc
2000		54.9	nbə
2500	ΛΙ	54.3	
3150	≥	53.4	įΨ
4000	≥	53.1	
5000	2	53.3	
AAD		-26.9	

Frequency, f, Hz

R _w =	51 dB	C _(50 - 3150) =	-3 dB	C _{tr (50 - 3150)} =	-11	dB
R _w +C =	50 dB	C _(50 - 5000) =	-2 dB	$C_{tr\ (50-5000)} =$	-11	dB
$R_w + C_{tr} =$	45 dB	C _(100 - 5000) =	-1 dB	$C_{tr (100 - 5000)} =$	-6	dB

Lee Grant-Riach Lead Technical Officer

The legal validity of this report can only be claimed on presentation of the complete report

[≥] indicates that the measurement at this frequency was corrected for background noise

[†] indicates that the frequency is outside of our UKAS accreditation and is for information only

1762

Sponsor:	Sika Services AG
Product Name/Desc.	Sikacryl® 621 Fire
Product Type	Fire Products
Material Type	Sealants / mineral wool

Variations:

Test Description Sikacryl® 621 Fire On source room side of wall, 25mm deep x

60mm wide x 2000mm high, woth 55mm deep stonewall

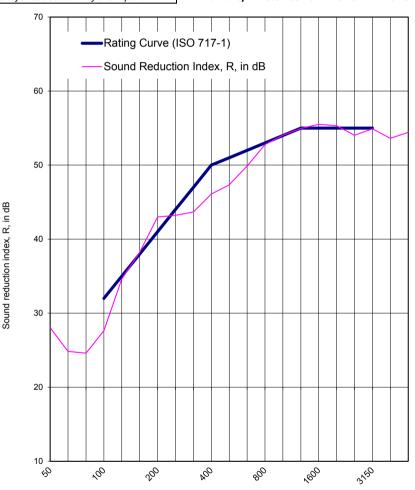
(60kg/m3) backing

For detailed technical specification, please refer to Section 2 of the report

Data sheet Ref. BMTMTP/F14022/AR6/P002

Date of Test: 28/01/2014

Source Room Volume: 86.00 m^3 Receive Room Volume: 63.00 m^3 Specimen Installed By:ClientArea of Specimen (S): 1.00 m^2


Sour. Rec.

 Temp. in Test Rooms:
 17.1
 17.1
 °C

 Static Pressure:
 100900.0
 100900.0
 Pa

 Humidity in Test Rooms:
 52.3
 52.3
 %

f, Hz	R	,dB	
50 ⁺		28.1	
63 ⁺		24.8	
80 ⁺		24.6	
100	[27.6	<u> </u>
125		34.6	
160		38.2	.17-
200		43.0	ISO 7
250		43.2	jt J
315		43.7	r e v
400	į	46.1	ordar
500		47.3	acco
630		49.9	Frequency range for rating in accordance with ISO 717-1
800		52.8	orra
1000		54.0	ge fc
1250	-	55.0	y ran
1600		55.5	nenc
2000		55.3	requ
2500	≥	54.0	"
3150	L≥	54.9	įΨ
4000	≥	53.6	
5000	≥	54.4	
AAD		-19.9	

Frequency, f, Hz

R _w = R _w +C =	C _(50 - 3150) =	C _{tr (50 - 3150)} =		
$R_w + C =$ $R_w + C_{tr} =$	$C_{(50-5000)} = C_{(100-5000)} =$	$C_{\text{tr }(50 - 5000)} = C_{\text{tr }(100 - 5000)} =$	-10 -6	
w -u	 (100 0000)	 u (100 0000)	-	

Lee Grant-Riach
Lead Technical Officer

The legal validity of this report can only be claimed on presentation of the complete report

[≥] indicates that the measurement at this frequency was corrected for background noise

[†] indicates that the frequency is outside of our UKAS accreditation and is for information only

Appendix 2 – Summary of Results & Test Data Sheets – Specimen and partition $14.2m^2$ (2 Pages)

Product Name	Sikacryl® 621 Fire
Product Type	Fire Products

Data Sheet Ref.	Variations		Test Result
			R _w (C;C _{tr})
BMTMTP/F14022/AR6/P001	Test Description	Sikacryl® 621 Fire On source room side of wall, 15mm deep x 60mm wide x 2000mm high, woth 55mm deep stonewall (60kg/m3) backing	62 (-1;-6) dB
BMTMTP/F14022/AR6/P002	Test Description	Sikacryl® 621 Fire On source room side of wall, 25mm deep x 60mm wide x 2000mm high, woth 55mm deep stonewall (60kg/m3) backing	63 (-1;-7) dB

Document No.: BMTMTP/F14022/AR6 Page No.: 9 of 10

Author: Martin Durham Issue Date: 07/02/2020

Sponsor: Sika Services AG Issue No.: 1

1762

Sponsor:	Sika Services AG
Product Name/Desc.	Sikacryl® 621 Fire
Product Type	Fire Products
Material Type	Sealants / mineral wool

Variations:

Test Description Sikacryl® 621 Fire On source room side of wall, 15mm deep x

60mm wide x 2000mm high, woth 55mm deep stonewall

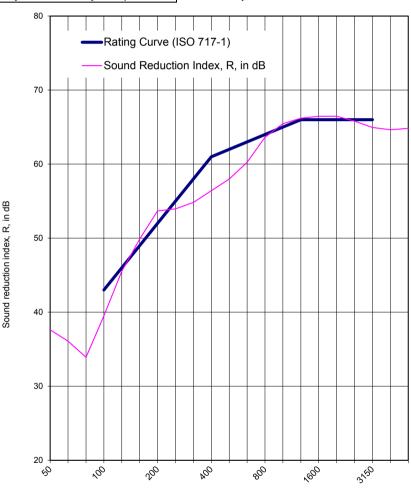
(60kg/m3) backing

For detailed technical specification, please refer to Section 2 of the report

Data sheet Ref. BMTMTP/F14022/AR6/P001

Date of Test: 28/01/2014

Source Room Volume: 86.00 m³
Receive Room Volume: 63.00 m³
Specimen Installed By: Client
Area of Specimen (S): 14.20 m²


Sour. Rec.

 Temp. in Test Rooms:
 17.1
 17.1
 °C

 Static Pressure:
 100900.0
 100900.0
 Pa

 Humidity in Test Rooms:
 52.3
 52.3
 %

f, Hz	R	,dB	
50 ⁺		37.6	
63 ⁺		36.1	
80 ⁺		33.9	
100	[39.5	<u> </u>
125	i	45.5	
160		49.9	117-
200		53.7	150 7
250		54.0	lth I
315		54.8	L e w
400	İ	56.4	ordar
500		58.0	acco
630		60.3	Frequency range for rating in accordance with ISO 717-1
800		63.6	orra
1000		65.5	ge fc
1250	!	66.2	yran
1600		66.5	nenc
2000		66.5	requ
2500	≥	65.8	"
3150	2	64.9	ļΨ
4000	≥	64.6	
5000	Δ	64.8	
AAD		-21.1	

Frequency, f, Hz

R _w =		C _(50 - 3150) =	-2 dB	C _{tr (50 - 3150)} =	-11	dB
R _w +C =	61 dB	C _(50 - 5000) =	-1 dB	$C_{tr\ (50-5000)} =$	-11	dB
$R_w + C_{tr} =$	56 dB	C _(100 - 5000) =	0 dB	$C_{tr (100 - 5000)} =$	-6	dB

Lee Grant-Riach Lead Technical Officer

The legal validity of this report can only be claimed on presentation of the complete report

[≥] indicates that the measurement at this frequency was corrected for background noise

[†] indicates that the frequency is outside of our UKAS accreditation and is for information only

1762

Sponsor:	Sika Services AG
Product Name/Desc.	Sikacryl® 621 Fire
Product Type	Fire Products
Material Type	Sealants / mineral wool

Variations:

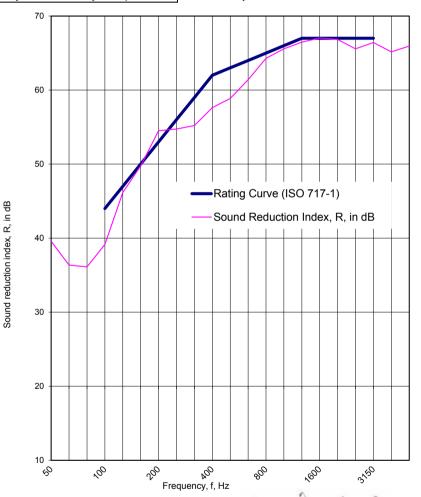
Test Description Sikacryl® 621 Fire On source room side of wall, 25mm deep x

60mm wide x 2000mm high, woth 55mm deep stonewall

(60kg/m3) backing

For detailed technical specification, please refer to Section 2 of the report

Data sheet Ref. BMTMTP/F14022/AR6/P002


Date of Test: 28/01/2014

Source Room Volume:86.00 m³Receive Room Volume:63.00 m³Specimen Installed By:ClientArea of Specimen (S):14.20 m²

Sour. Rec.

Temp. in Test Rooms: 17.1 17.1 °C
Static Pressure: 100900.0 100900.0 Pa
Humidity in Test Rooms: 52.3 52.3 %

-			ı
f, Hz	R	,dB	
50 ⁺		39.6	
63 ⁺		36.4	
80 ⁺		36.1	
100	<u>. </u>	39.2	∤ ↑
125		46.2	1
160		49.8	,17-
200		54.5	SO 7
250		54.7	jg j
315		55.2	v
400	į	57.6	rdan
500		58.9	accor
630		61.4	Frequency range for rating in accordance with ISO 717-1
800		64.3	orra
1000		65.6	ge f
1250		66.5	y ran
1600	i	67.0	ency
2000		66.8	nbə.
2500	≥	65.6	[E
3150	ΛI	66.4	$ \Psi $
4000	2	65.2	
5000	Δ	65.9	
AAD		-25.9	

$R_{\rm w} =$	63 dB	C (5
R _w +C =	62 dB	C (5
$R_w + C_{tr} =$	56 dB	C (10

-11	dB	
-11	dB	
-7	dB	
	-11	-11 dB

Lee Grant-Riach Lead Technical Officer

The legal validity of this report can only be claimed on presentation of the complete report

 $^{\, \}succeq \,$ indicates that the measurement at this frequency was corrected for background noise

[†] indicates that the frequency is outside of our UKAS accreditation and is for information only

Appendix 3 – Summary of Results & Test Data Sheets – Dnew (2 Pages)

Product Name	Sikacryl® 621 Fire
Product Type	Fire Products

Data Sheet Ref.	Variations		Test Result
			R _w (C;C _{tr})
BMTMTP/F14022/AR6/P001	Test Description	Sikacryl® 621 Fire On source room side of wall, 15mm deep x 60mm wide x 2000mm high, woth 55mm deep stonewall (60kg/m3) backing	61 (-1;-6) dB
BMTMTP/F14022/AR6/P002	Test Description	Sikacryl® 621 Fire On source room side of wall, 25mm deep x 60mm wide x 2000mm high, woth 55mm deep stonewall (60kg/m3) backing	61 (-1;-6) dB

Document No.: BMTMTP/F14022/AR6 Page No.: 10 of 10 Author: Martin Durham Issue Date: 07/02/2020 Sika Services AG Issue No.: Sponsor:

1762

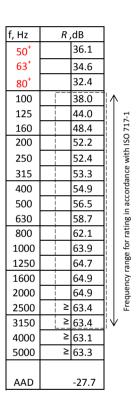
Ref. No.: BMTMTP/F14022/AR6//P001

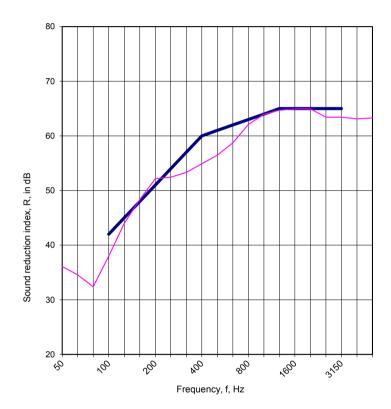
Date of Test: 28/01/2014

Source Room Volume: 86.00 m³

Receive Room Volume: 63.00 m³

Temperature in Test Rooms: 17.1 °C


Test Specimen Installed By: Client


Static Pressure: 100900.0 Pa **Humidity in Test Rooms:** 52.3 %

Sponsor: Sika Services AG

Test Specimen Description: Sikacryl® 621 Fire On source room side of wall, 15mm deep x 60mm wide x 2000mm high, woth 55mm deep

stonewall (60kg/m3) backing

Rating Curve (ISO 717-1) — Sound Reduction Index, R, in dB

 $D_{n,e,w} = 61 \text{ dB}$ $D_{n,e,w} + C = 60 \text{ dB}$ $D_{n,e,w} + C_{tr} = 55 \text{ dB}$

Lee Grant-Riach Lead Technical Officer

The legal validity of this report can only be claimed on presentation of the complete report

[†] indicates that the frequency is outside of our UKAS accreditation and is for information only

1762

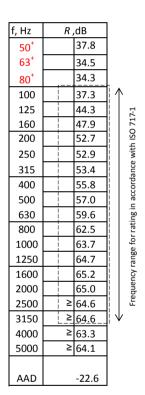
Ref. No.: BMTMTP/F14022/AR6//P002

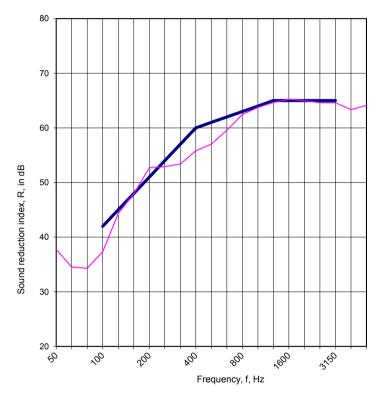
Date of Test: 28/01/2014

Source Room Volume: 88.80 m³

Receive Room Volume: 67.50 m³

Temperature in Test Rooms: 17.1 °C


Test Specimen Installed By: Client


Static Pressure: 100900.0 Pa **Humidity in Test Rooms:** 52.3 %

Sponsor: Sika Services AG

Test Specimen Description: Sikacryl® 621 Fire On source room side of wall, 25mm deep x 60mm wide x 2000mm high, woth 55mm deep

stonewall (60kg/m3) backing

Rating Curve (ISO 717-1) — Sound Reduction Index, R, in dB

 $D_{n,e,w} = 61 \text{ dB}$ $D_{n,e,w} + C = 60 \text{ dB}$ $D_{n,e,w} + C_{tr} = 55 \text{ dB}$

C _(50 - 3150) =	-2 dB	$C_{tr (50 - 3150)} =$	-10	dB	
C _(50 - 5000) =	-1 dB	$C_{tr (50 - 5000)} =$	-11	dB	
C _(100 - 5000) =	-1 dB	$C_{tr (100 - 5000)} =$	-7	dB	

Lee Grant-Riach Lead Technical Officer

The legal validity of this report can only be claimed on presentation of the complete report

[†] indicates that the frequency is outside of our UKAS accreditation and is for information only